Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes
نویسندگان
چکیده
We show how to use unlabeled data and a deep belief net (DBN) to learn a good covariance kernel for a Gaussian process. We first learn a deep generative model of the unlabeled data using the fast, greedy algorithm introduced by [7]. If the data is high-dimensional and highly-structured, a Gaussian kernel applied to the top layer of features in the DBN works much better than a similar kernel applied to the raw input. Performance at both regression and classification can then be further improved by using backpropagation through the DBN to discriminatively fine-tune the covariance kernel.
منابع مشابه
Factored 3-Way Restricted Boltzmann Machines For Modeling Natural Images
Deep belief nets have been successful in modeling handwritten characters, but it has proved more difficult to apply them to real images. The problem lies in the restricted Boltzmann machine (RBM) which is used as a module for learning deep belief nets one layer at a time. The Gaussian-Binary RBMs that have been used to model real-valued data are not a good way to model the covariance structure ...
متن کاملStochastic Variational Deep Kernel Learning
Deep kernel learning combines the non-parametric flexibility of kernel methods with the inductive biases of deep learning architectures. We propose a novel deep kernel learning model and stochastic variational inference procedure which generalizes deep kernel learning approaches to enable classification, multi-task learning, additive covariance structures, and stochastic gradient training. Spec...
متن کاملKernel Methods for Deep Learning
We introduce a new family of positive-definite kernel functions that mimic the computation in large, multilayer neural nets. These kernel functions can be used in shallow architectures, such as support vector machines (SVMs), or in deep kernel-based architectures that we call multilayer kernel machines (MKMs). We evaluate SVMs and MKMs with these kernel functions on problems designed to illustr...
متن کاملRandom walk kernels and learning curves for Gaussian process regression on random graphs
We consider learning on graphs, guided by kernels that encode similarity between vertices. Our focus is on random walk kernels, the analogues of squared exponential kernels in Euclidean spaces. We show that on large, locally treelike, graphs these have some counter-intuitive properties, specifically in the limit of large kernel lengthscales. We consider using these kernels as covariance matrice...
متن کاملDeep Kernel Learning
We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the nonparametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel represe...
متن کامل